Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC
نویسندگان
چکیده
Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC.
منابع مشابه
Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression.
Normal physiology relies on the organization of transmembrane proteins by molecular scaffolds, such as tetraspanins. Oncogenesis frequently involves changes in their organization or expression. The tetraspanin CD151 is thought to contribute to cancer progression through direct interaction with the laminin-binding integrins α3β1 and α6β1. However, this interaction cannot explain the ability of C...
متن کاملMolecular and Cellular Pathobiology Integrin-Free Tetraspanin CD151 Can Inhibit Tumor Cell Motility uponClustering and Is aClinical Indicator of Prostate Cancer Progression
Normal physiology relies on the organization of transmembrane proteins by molecular scaffolds, such as tetraspanins. Oncogenesis frequently involves changes in their organization or expression. The tetraspanin CD151 is thought to contribute to cancer progression through direct interaction with the laminin-binding integrins a3b1 anda6b1.However, this interaction cannot explain the ability ofCD15...
متن کاملProfiling of the Tetraspanin CD151 Web and Conspiracy of CD151/Integrin β1 Complex in the Progression of Hepatocellular Carcinoma
Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and assoc...
متن کاملCD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization.
CD151, a master regulator of laminin-binding integrins (alpha(6)beta(4), alpha(6)beta(1), and alpha(3)beta(1)), assembles these integrins into complexes called tetraspanin-enriched microdomains. CD151 protein expression is elevated in 31% of human breast cancers and is even more elevated in high-grade (40%) and estrogen receptor-negative (45%) subtypes. The latter includes triple-negative (estr...
متن کاملCD151 Accelerates Breast Cancer by Regulating A6 Integrin Function, Signaling, and Molecular Organization
CD151, a master regulator of laminin-binding integrins (A6B4, A6B1, and A3B1), assembles these integrins into complexes called tetraspanin-enriched microdomains. CD151 protein expression is elevated in 31% of human breast cancers and is even more elevated in high-grade (40%) and estrogen receptor–negative (45%) subtypes. The latter includes triplenegative (estrogen receptor, progesterone recept...
متن کامل